Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.659
1.
Nat Commun ; 15(1): 3813, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714682

Innate antiviral factors are essential for effective defense against viral pathogens. However, the identity of major restriction mechanisms remains elusive. Current approaches to discover antiviral factors usually focus on the initial steps of viral replication and are limited to a single round of infection. Here, we engineered libraries of >1500 replication-competent HIV-1 constructs each expressing a single gRNAs to target >500 cellular genes for virus-driven discovery of antiviral factors. Passaging in CD4+ T cells robustly enriched HIV-1 encoding sgRNAs against GRN, CIITA, EHMT2, CEACAM3, CC2D1B and RHOA by >50-fold. Using an HIV-1 library lacking the accessory nef gene, we identified IFI16 as a Nef target. Functional analyses in cell lines and primary CD4+ T cells support that the HIV-driven CRISPR screen identified restriction factors targeting virus entry, transcription, release and infectivity. Our HIV-guided CRISPR technique enables sensitive discovery of physiologically relevant cellular defense factors throughout the entire viral replication cycle.


CD4-Positive T-Lymphocytes , HIV-1 , Virus Replication , nef Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/genetics , HIV-1/physiology , Virus Replication/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , HEK293 Cells , CRISPR-Cas Systems , HIV Infections/virology , HIV Infections/genetics , HIV Infections/immunology , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Virus Internalization
2.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698419

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Adipose Tissue , Chemokine CXCL12 , Receptors, CXCR4 , Regeneration , Stem Cells , rhoA GTP-Binding Protein , Chemokine CXCL12/metabolism , Animals , Receptors, CXCR4/metabolism , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , rhoA GTP-Binding Protein/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Feedback, Physiological , Cell Movement , Cells, Cultured , Male , Signal Transduction
3.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740643

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Proline , Proline/metabolism , Proline/chemistry , Proline/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/genetics , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/chemistry , Models, Molecular , Conserved Sequence , Humans , Protein Binding
4.
Reprod Domest Anim ; 59(5): e14576, 2024 May.
Article En | MEDLINE | ID: mdl-38712681

The possibility of embryo cryopreservation is important for applying the genome resource banking (GRB) concept to those mammalian species that exhibit embryonal diapause in their early development. Odc1 encodes ODC1, which is a key enzyme in polyamine synthesis. RhoA is an essential part of Rho/ROCK system. Both Odc1 and RhoA play an important role in preimplantation embryo development. Studying these systems in mammalian species with obligate or experimentally designed embryonic diapause may provide insight into the molecular machinery underlying embryo dormancy and re-activation. The effect of cryopreservation procedures on the expression of the Odc1 and RhoA in diapausing embryos has not been properly studied yet. The purpose of this work is to address the possibility of cryopreservation diapausing embryos and to estimate the expression of the Odc1 and RhoA genes in diapausing and non-diapausing embryos before and after freeze-thaw procedures using ovariectomized progesterone treated mice as a model. Both diapausing and non-diapausing in vivo-derived embryos continued their development in vitro after freezing-thawing as evidenced by blastocoel re-expansion. Although cryopreservation dramatically decreased the expression of the Odc1 and RhoA genes in non-diapausing embryos, no such effects have been observed in diapausing embryos where these genes were already at the low level before freeze-thaw procedures. Future studies may attempt to facilitate the re-activation of diapausing embryos, for example frozen-thawed ones, specifically targeting Odc1 or Rho/ROCK system.


Blastocyst , Cryopreservation , rhoA GTP-Binding Protein , Animals , Cryopreservation/veterinary , Blastocyst/metabolism , Female , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Mice , Gene Expression Regulation, Developmental , Diapause , Embryonic Development , Embryo Culture Techniques/veterinary
5.
ACS Biomater Sci Eng ; 10(5): 3069-3085, 2024 May 13.
Article En | MEDLINE | ID: mdl-38578110

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Drug delivery to the brain through the blood-brain barrier (BBB) is a significant challenge in PD treatment. Exosomes, which can efficiently traverse the BBB, which many drugs cannot penetrate, are ideal natural carriers for drug delivery. In this study, the BBB shuttle peptide was modified on the exosome surfaces. Three types of exosomes were constructed, each modified with a distinct peptide (RVG29, TAT, or Ang2) and loaded with miR-133b. The safety and brain-targeting capabilities of these peptide-modified exosomes were then evaluated. Finally, the mechanism by which RVG29-Exo-133b regulates the RhoA-ROCK signaling pathway was investigated. The findings indicate that the three peptide-modified exosomes were adequately tolerated, safe, and effectively assimilated in vivo and ex vivo, with RVG29 exhibiting superior targeting to the brain. Furthermore, RVG29-Exo-133b decreased the phosphorylation level of the Tau protein by targeting the RhoA-ROCK signaling pathway. It also enhanced the motor function in mice with PD, thereby reducing the degree of depression, improving dopaminergic neuron function, and attenuating 6-OHDA-induced nerve damage. In this study, we developed a stable drug delivery mechanism that targets the intracerebral region using exosomes. Furthermore, a novel strategy was developed to manage PD and can potentially serve as a preclinical basis for utilizing exosomes in the diagnosis and treatment of neurodegenerative conditions.


Exosomes , MicroRNAs , Parkinson Disease , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Exosomes/metabolism , Animals , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Mice , Male , Mice, Inbred C57BL , Humans , Peptides/metabolism , Blood-Brain Barrier/metabolism
6.
Cell Signal ; 119: 111172, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604342

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


M Phase Cell Cycle Checkpoints , Simvastatin , Simvastatin/pharmacology , Humans , M Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Monomeric GTP-Binding Proteins/metabolism , Mitosis/drug effects , Cell Division/drug effects , rhoA GTP-Binding Protein/metabolism
7.
Biomater Adv ; 160: 213836, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599042

The behavior of stem cells is regulated by mechanical cues in their niche that continuously vary due to extracellular matrix (ECM) remodeling, pulsated mechanical stress exerted by blood flow, and/or cell migration. However, it is still unclear how dynamics of mechanical cues influence stem cell lineage commitment, especially in a 3D microenvironment where mechanosensing differs from that in a 2D microenvironment. In the present study, we investigated how temporally varying mechanical signaling regulates expression of the early growth response 1 gene (Egr1), which we recently discovered to be a 3D matrix-specific mediator of mechanosensitive neural stem cell (NSC) lineage commitment. Specifically, we temporally controlled the activity of Ras homolog family member A (RhoA), which is known to have a central role in mechanotransduction, using our previously developed Arabidopsis thaliana cryptochrome-2-based optoactivation system. Interestingly, pulsed RhoA activation induced Egr1 upregulation in stiff 3D gels only, whereas static light stimulation induced an increase in Egr1 expression across a wide range of 3D gel stiffnesses. Actin assembly inhibition limited Egr1 upregulation upon RhoA activation, implying that RhoA signaling requires an actin-involved process to upregulate Egr1. Consistently, static-light RhoA activation rather than pulsed-light activation restricted neurogenesis in soft gels. Our findings indicate that the dynamics of RhoA activation influence Egr1-mediated stem cell fate within 3D matrices in a matrix stiffness-dependent manner.


Mechanotransduction, Cellular , Neural Stem Cells , rhoA GTP-Binding Protein , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/radiation effects , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Light , Cell Differentiation , Humans , Extracellular Matrix/metabolism , Animals
8.
Hum Reprod ; 39(5): 1057-1071, 2024 May 02.
Article En | MEDLINE | ID: mdl-38511216

STUDY QUESTION: How does osteopontin (OPN) in endometriosis ectopic stromal cells (EESCs) participate in the pathogenesis of endometriosis and achieve non-invasive detection in vitro? SUMMARY ANSWER: Targeted OPN regulates endometriosis's necroptosis and inflammatory state by inhibiting the RhoA/reactive oxygen species (ROS) axis, thereby alleviating endometriosis and enabling non-invasive detection of menstrual blood in vitro. WHAT IS KNOWN ALREADY: Endometriosis is a chronic inflammatory disease. Recent studies have shown that OPN plays an important role in disease progression by regulating cell death and inflammation. STUDY DESIGN, SIZE, DURATION: The study included 20 patients diagnosed with endometriosis (confirmed by laparoscopy and histology) and 10 controls without endometriosis. Endometriotic stromal cells were isolated from endometrial samples, while menstrual blood endometrial cells (MESCs) were isolated from menstrual blood. These cells were then cultured in vitro and utilized in subsequent experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: OPN expression in EESCs was assessed using inflammatory factor sequencing, immunohistochemical staining (IHC), quantitative real-time PCR (qRT-PCR) analysis, and Western blotting (WB). The biological behavior of OPN and its effects on inflammatory factors were examined using EdU, wound-healing, Transwell, and ELISA assays. Necroptosis in EESCs and its impact on inflammatory factors were detected through qRT-PCR, WB, and Calcein-AM/PI fluorescence assays. The examination of mitochondrial stress in EESCs involved the use of the Mitochondrial Membrane Potential (ΔΨm) Assay, ROS detection, and Calcein-AM Loading/cobalt chloride Quenching. qRT-PCR, WB, and other experiments were conducted to verify the regulation of necroptosis and inflammatory factor levels in EESCs by OPN through the RhoA/ROS axis. Knockdown of OPN and its inhibitory effect on endometriosis lesion size were confirmed using AAV9 virus, IHC, qRT-PCR, WB, and other experiments. Additionally, OPN expression in MESCs was detected using transcriptome sequencing, RT-PCR, WB, and other experiments. MAIN RESULTS AND THE ROLE OF CHANCE: In vitro assays demonstrated a significant upregulation of OPN in EESCs, and the knockdown of OPN effectively inhibited necroptosis and the release of inflammatory factors. OPN inhibited necroptosis and inflammatory factor release by mediating RhoA-dependent ROS production and blocking mixed lineage kinase domain-like protein phosphorylation at the cell membrane. In vivo, targeting of OPN can inhibit the growth of endometriosis lesions. Clinically, OPN was also significantly upregulated in the menstrual blood of patients with endometriosis. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Due to limitations in obtaining surgical specimens, our study primarily involved collecting endometriosis tissues from women during the proliferative and secretory phases of the menstrual cycle. We observed a significant overexpression of OPN in the samples used for our investigation. However, the expression of OPN in endometriosis tissues during the intermenstrual phase remains unknown. WIDER IMPLICATIONS OF THE FINDINGS: Our findings highlight the pivotal role of the OPN/RhoA/ROS axis in the regulation of necroptosis and the release of inflammatory factors. OPN knockdown exerts a therapeutic effect in vivo, and the high expression detection of OPN in menstrual blood in vitro. In summary, targeting OPN provides possibilities for the treatment and detection of endometriosis. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (82071626), the Zhejiang Province Public Welfare Technology Application Research Project (LGF21H040010), and the Clinical Research project of the Second Affiliated Hospital of Wenzhou Medical University (1010293). The authors have no conflicts of interest.


Endometriosis , Inflammation , Osteopontin , Reactive Oxygen Species , rhoA GTP-Binding Protein , Adult , Female , Humans , Cells, Cultured , Endometriosis/metabolism , Endometriosis/pathology , Endometrium/metabolism , Endometrium/pathology , Inflammation/metabolism , Menstruation , Osteopontin/metabolism , Reactive Oxygen Species/metabolism , rhoA GTP-Binding Protein/metabolism , Signal Transduction , Stromal Cells/metabolism
9.
Biochem Pharmacol ; 222: 116049, 2024 Apr.
Article En | MEDLINE | ID: mdl-38342347

We previously showed that digitoxin inhibits angiogenesis and cancer cell proliferation and migration and these effects were associated to protein tyrosine kinase 2 (FAK) inhibition. Considering the interactions between FAK and Rho GTPases regulating cell cytoskeleton and movement, we investigated the involvement of RhoA and Rac1 in the antiangiogenic effect of digitoxin. Phalloidin staining of human umbilical vein endothelial cells (HUVECs) showed the formation of stress fibers in cells treated with 10 nM digitoxin. By Rhotekin- and Pak1- pull down assays, detecting the GTP-bound form of GTPases, we observed that digitoxin (10-25 nM) induced sustained (0.5-6 h) RhoA activation with no effect on Rac1. Furthermore, inhibition of HUVEC migration and capillary-like tube formation by digitoxin was counteracted by hindering RhoA-ROCK axis with RhoA silencing or Y-27632 treatment. Digitoxin did not decrease p190RhoGAP phosphorylation at Tyr1105 (a site targeted by FAK), suggesting that RhoA activation was independent from FAK inhibition. Because increasing evidence points to a redox regulation of RhoA, we measured intracellular ROS and found that digitoxin treatment enhanced ROS levels in a concentration-dependent manner (1-25 nM). Notably, the flavoprotein inhibitor DPI or the pan-NADPH oxidase (NOX) inhibitor VAS-2870 antagonized both ROS increase and RhoA activation by digitoxin. Our results provide evidence that inhibition of HUVEC migration and tube formation by digitoxin is dependent on ROS production by endothelial NOX, which leads to the activation of RhoA/ROCK pathway. Digitoxin effects on proteins regulating cytoskeletal organization and cell motility could have a wider impact on cancer progression, beyond the antiangiogenic activity.


Digitoxin , NADPH Oxidases , Humans , Reactive Oxygen Species/metabolism , Digitoxin/pharmacology , Human Umbilical Vein Endothelial Cells , Focal Adhesion Kinase 1/metabolism , Phosphorylation , Cell Movement , NADPH Oxidases/metabolism , rhoA GTP-Binding Protein/metabolism , rho-Associated Kinases/metabolism
10.
Curr Mol Pharmacol ; 17: e18761429274883, 2024.
Article En | MEDLINE | ID: mdl-38389417

Guanine nucleotide exchange factor H1 (GEF-H1) is a unique protein modulated by the GDP/GTP exchange. As a regulator of the Rho-GTPase family, GEF-H1 can be activated through a microtubule-depended mechanism and phosphorylation regulation, enabling it to perform various pivotal biological functions across multiple cellular activities. These include the regulation of Rho-GTPase, cytoskeleton formation, cellular barrier, cell cycle, mitosis, cell differentiation, and vesicle trafficking. Recent studies have revealed its crucial effect on the tumor microenvironment (TME) components, promoting tumor initiation and progress. Consequently, an in-depth exploration of GEF-H1's biological roles and association with tumors holds promise for its potential as a valuable molecular target in tumor treatment.


Neoplasms , rhoA GTP-Binding Protein , Humans , Rho Guanine Nucleotide Exchange Factors/metabolism , rhoA GTP-Binding Protein/metabolism , Microtubules/metabolism , Proteins , Neoplasms/metabolism , Tumor Microenvironment
11.
Discov Med ; 36(180): 190-198, 2024 Jan.
Article En | MEDLINE | ID: mdl-38273759

BACKGROUND: Colorectal cancer (CRC) is a common malignancy with high morbidity and mortality. To improve CMC prognosis, research must identify safe and effective natural drugs that improve the proliferation, migration, and epithelial mesenchymal transition (EMT) processes of CRC. The purpose of this paper is to understand how cichoric acid (CA) impacts CRC proliferation, metastasis, and EMT of CRC by adjusting the Ras homolog family member A (RhoA)/RHO-associated coiled coil protein kinase (ROCK) pathway. METHODS: Human Colon Cancer Cells (HCT116) cells were randomly divided into Control (blank medium treatment), low concentration CA (CA-L), medium concentration CA (CA-M), high concentration CA (CA-H), and high-concentration CA+RhoA activator U46619 (CA-H+U46619) groups. Cell proliferation, migration and invasion, and apoptosis were evaluated with cell counting kit-8 (CCK-8) assay, transwell assay, and flow cytometry, respectively. The expression of RhoA, ROCK, and EMT-associated proteins were detected by Western Blot. The CRC transplanted tumor model of nude mice was constructed, and the mice were grouped into low-dose CA (CA-Low, 15 mg/kg CA), high-dose CA (CA-High, 30 mg/kg CA), high-dose CA+RhoA activator U46619 (CA-High+U46619, 30 mg/kg CA+10 mM U46619), and Model groups at random, with 12 mice in each group. Tumor volume, mass, and inhibition rate were measured and calculated, and the pathological changes of tumor in nude mice were detected by hematoxylin-eosin (HE) staining. RESULTS: Compared with Control, the optical density of cells at 450 nm (OD450) value (48 h, 72 h), cell migration number, cell invasion number, RhoA, ROCK1, N-cadherin, vimentin protein expression levels of HCT116 cells were reduced in CA-M and CA-H groups; however, E-cadherin level and apoptosis rate were increased (p < 0.05). In the CA-High group, we observed a significant decrease (p < 0.05) in both tumor volume and mass in nude mice. Additionally, the tumor tissue cells exhibited better organization, reduced size, reduced tumor and vascular tissue hyperplasia, and decreased infiltration of inflammatory cells. U46619 decreased the retardation of CA on the proliferation, EMT, and migration of CRC tumor cells as well as the growth of transplanted CRC tumors in nude mice. CONCLUSIONS: CA may reduce CRC migration, proliferation, and EMT by inhibiting the activation of the RhoA/ROCK signaling pathway.


Caffeic Acids , Colorectal Neoplasms , Succinates , rhoA GTP-Binding Protein , Humans , Animals , Mice , Mice, Nude , Cell Line, Tumor , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/pharmacology , rhoA GTP-Binding Protein/therapeutic use , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/therapeutic use , Signal Transduction , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Cell Proliferation , Cell Movement , rho-Associated Kinases/metabolism
12.
Phytomedicine ; 124: 155268, 2024 Feb.
Article En | MEDLINE | ID: mdl-38176265

BACKGROUND: Obesity has emerged as a global epidemic. Recent research has indicated that diet-induced obesity can be prevented by promoting lacteal junction zippering. Berberine, which is derived from natural plants, is found to be promising in weight reduction, but the underlying mechanism remains unspecified. PURPOSE: To determine whether berberine protects against obesity by regulating the lacteal junction and to explore potential molecular mechanisms. METHODS: Following the induction of the diet-induced obese (DIO) model, mice were administered low and high doses of berberine for 4 weeks. Indicators associated with insulin resistance and lipid metabolism were examined. Various methods, such as Oil Red O staining, transmission electron microscopy imaging, confocal imaging and others were used to observe the effects of berberine on lipid absorption and the lacteal junction. In vitro, human dermal lymphatic endothelial cells (HDLECs) were used to investigate the effect of berberine on LEC junctions. Western Blot and immunostaining were applied to determine the expression levels of relevant molecules. RESULTS: Both low and high doses of berberine reduced body weight in DIO mice without appetite suppression and ameliorated glucolipid metabolism disorders. We also found that the weight loss effect of berberine might contribute to the inhibition of small intestinal lipid absorption. The possible mechanism was related to the promotion of lacteal junction zippering via suppressing the ras homolog gene family member A (RhoA)/Rho-associated kinase (ROCK) signaling pathway. In vitro, berberine also promoted the formation of stable mature junctions in HDLECs, involving the same signaling pathway. CONCLUSION: Berberine could promote lacteal junction zippering and ameliorate diet-induced obesity through the RhoA/ROCK signaling pathway.


Berberine , Mice , Humans , Animals , Berberine/pharmacology , Endothelial Cells/metabolism , Signal Transduction , Obesity/drug therapy , Diet , Lipids , rhoA GTP-Binding Protein/metabolism
13.
Cell Signal ; 114: 110978, 2024 02.
Article En | MEDLINE | ID: mdl-37972801

Spinal cord injury (SCI) is a devastating disorder and a leading cause of disability in adults worldwide. Multiple studies have reported the upregulation of programmed cell death 1 (PD-1) following SCI. However, the underlying mechanism of PD-1 deficiency in SCI is not well established. Therefore, we aimed to investigate the role and potential mechanism of PD-1 in SCI pathogenesis. PD-1 Knockout (KO) SCI mouse model was established, and PD-1 expression was evaluated in tissue samples by western blot assay. We then used a series of function gain-and-loss assays to determine the role of PD-1 in SCI pathogenesis. Moreover, mechanistic assays were performed to explore the association between PD-1, neuron-glia antigen-2 (NG2) glia cells, and miR-23b-5p and then investigated the involved signaling pathway. Results illustrated that PD-1 deficiency enhanced the inflammatory response, neuron loss, and functional impairment induced by SCI. We found that NG2 glia depletion aggravated inflammation, reduced neural survival, and suppressed locomotor recovery in murine SCI model. Further analysis indicated that NG2+ cells were increased in the spinal cord of SCI mice, and PD-1 deficiency increased the number of NG2+ cells by activating the Nogo receptor/ras homolog family member A/Rho kinase (NgR/RhoA/ROCK) signaling. Mechanistically, miR-23b-5p was identified as the negative regulator of PD-1 in NG2 glia. MiR-23b-5p deficiency reduced the expression of inflammatory cytokines, enhanced neural survival, and promoted locomotor recovery in SCI mice, which was counteracted by PD-1 deficiency. In conclusion, PD-1 deficiency exacerbates SCI in vivo by regulating reprogramming of NG2 glia and activating the NgR/RhoA/ROCK signaling.


MicroRNAs , Programmed Cell Death 1 Receptor , Spinal Cord Injuries , Animals , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroglia/metabolism , Programmed Cell Death 1 Receptor/metabolism , rhoA GTP-Binding Protein/metabolism , Signal Transduction , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Nogo Receptors/metabolism , rho-Associated Kinases/metabolism
14.
Biophys J ; 123(1): 57-67, 2024 01 02.
Article En | MEDLINE | ID: mdl-37978802

Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.


Guanine Nucleotide Dissociation Inhibitors , rho Guanine Nucleotide Dissociation Inhibitor alpha , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Phosphorylation , Guanine Nucleotide Dissociation Inhibitors/chemistry , Guanine Nucleotide Dissociation Inhibitors/metabolism , rho Guanine Nucleotide Dissociation Inhibitor alpha/metabolism , Protein Binding , rhoA GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
15.
Cell Biochem Biophys ; 82(1): 127-137, 2024 Mar.
Article En | MEDLINE | ID: mdl-37801199

LAMB3, a major extracellular matrix and basal membrane component, is involved in wound healing. We aimed to understand its role in Asherman's syndrome (AS), which is associated with infertility, by using bioinformatics analysis and cultured endometrial stromal cells (ESCs). MRNAs extracted from tissues obtained from control subjects and patients with severe intrauterine adhesion were sequenced and subjected to bioinformatics analysis and the RhoA/ROCK1/MYL9 pathway was implicated and this subsequently studied using cultured primary ESCs. The effects of overexpression and knockdown and activation and inhibition of LAMB3 on the mesenchymal to myofibroblastic phenotypic transformation of ECCs were assessed using PCR and western blot analysis. Phalloidin was used to localize the actin cytoskeletal proteins. Silencing of LAMB3 reversed the TGF-ß-induced ESC myofibroblast phenotype conversion, whereas overexpression of LAMB3 promoted this process. Activation and silencing of LAMB3 led to remodeling of the ESC cytoskeleton. Overexpression and silencing of LAMB3 caused activation and inhibition of ESCs, respectively. Y-27632 and LPA reversed the activation and inhibition of the RhoA/ROCK1/MYL9 pathway after overexpression and silencing, respectively. These results suggest that LAMB3 can regulate ESC fibrosis transformation and cytoskeleton remodeling via the RhoA/ROCK1/MYL9 pathway. This study provides a potential new target for gene therapy and drug intervention of AS.


Cytoskeleton , rho-Associated Kinases , Humans , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Actins/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Signal Transduction , Stromal Cells/metabolism , Transforming Growth Factor beta/metabolism , Myosin Light Chains/metabolism
16.
Biomed Pharmacother ; 170: 115983, 2024 Jan.
Article En | MEDLINE | ID: mdl-38134633

ARHGEF17 encodes the protein RhoGEF17, which is highly expressed in vascular endothelial cells. It is a guanine nucleotide exchange factor (GEF) that accelerates the exchange of GDP with GTP on many small GTPases through its Dbl homology (DH) domain, enabling the activation of Rho-GTPases such as RhoA, RhoB, and RhoC. Rho GTPase-regulated changes in the actin cytoskeleton and cell adhesion kinetics are the main mechanisms mediating many endothelial cell (EC) alterations, including cell morphology, migration, and division changes, which profoundly affect EC barrier function. This review focuses on ARHGEF17 expression, activation and biological functions in ECs, linking its regulation of cellular morphology, migration, mitosis and other cellular behaviors to disease onset and progression. Understanding ARHGEF17 mechanisms of action will contribute to the design of therapeutic approaches targeting RhoGEF17, a potential drug target for the treatment of various endothelium-related diseases, Such as vascular inflammation, carcinogenesis and transendothelial metastasis of tumors.


Endothelial Cells , Neoplasms , Humans , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Neoplasms/drug therapy , Endothelium
17.
Mol Biol Cell ; 35(1): br1, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37910204

Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.


Cell Movement , Keratinocytes , cdc42 GTP-Binding Protein , rho GTP-Binding Proteins , cdc42 GTP-Binding Protein/metabolism , Fibroblasts/metabolism , Keratinocytes/physiology , Myosins/metabolism , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Humans
18.
Curr Biol ; 34(2): 245-259.e8, 2024 01 22.
Article En | MEDLINE | ID: mdl-38096821

In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network. Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin-II-dependent actin flow and protrusion retraction at the base of the protrusions and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other contexts.


Actins , Zebrafish , Animals , Actins/metabolism , Zebrafish/metabolism , Polymerization , Cell Movement , rhoA GTP-Binding Protein/metabolism , Cytoskeletal Proteins/metabolism , Myosin Type II/metabolism
19.
Sci Signal ; 16(816): eadk9171, 2023 12 19.
Article En | MEDLINE | ID: mdl-38113334

Oncogenic small guanosine triphosphatases (GTPases) are often characterized by a limited set of activating mutations that affect their intrinsic biochemical function, but RHOA-which is frequently mutated in gastric cancer-appears not to have read the instruction manual. Having previously characterized the Y42C RHOA mutation in gastric cancer, in this issue of Science Signaling, Schaefer et al. take on the slightly less common L57V mutation and find that individual RHOA mutations can have different and unpredictable signaling outcomes.


Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Mutation , Signal Transduction/genetics , Gain of Function Mutation , GTP Phosphohydrolases/genetics , rhoA GTP-Binding Protein/metabolism
20.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37958606

Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.


Monomeric GTP-Binding Proteins , Schizophrenia , Humans , Mice , Animals , rho-Associated Kinases/metabolism , Monomeric GTP-Binding Proteins/metabolism , Schizophrenia/drug therapy , Schizophrenia/genetics , Signal Transduction , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genomics
...